Parasites in Bears (Ursidae): Sampling Gaps in the Spectacle Bear (Tremarctos ornatus)

Resumen

Los parásitos son parte de los procesos naturales que ayudan a regular las poblaciones y mantener el equilibrio del ecosistema. Existe un reconocimiento creciente de los parásitos como factores importantes para la conservación de las especies, principalmente aquellas vulnerables a la extinción en un entorno cambiante. Los osos son buenos modelos biológicos para monitorear agentes infecciosos en vida silvestre, dado su ciclo de vida, su amplio rango de hogar y la gravedad de las interacciones con los humanos y sus animales domésticos como resultado de su plasticidad conductual, inteligencia y hábitos alimentarios omnívoros. En la región andina, la única especie de oso, Tremarctos ornatus, está categorizada como vulnerable. Con el fin de determinar los vacíos de muestreo y priorizar el enfoque para comprender su diversidad de parásitos, se realizó una revisión de los parásitos documentados en los osos en todo el mundo y se analizó la probabilidad de que los parásitos registrados en estas otras especies estén presentes en T. ornatus en la región andina, específicamente en Colombia. En 283 referencias relevantes, se encontraron 647 registros de 189 parásitos en 37 países. De las especies de osos con parásitos registrados, Ursus americanus tuvo los registros más numerosos y completos. Las especies tropicales H. malayanus, M. ursinus y T. ornatus mostraron la menor diversidad de parásitos y la estimación de especies no vistas. Son de interés alrededor de 80 parásitos que se han registrado en las siete especies de osos no colombianos, pero que están documentados en otras especies en el país.
PDF (Inglés)

Referencias

Aguirre AA, Ostfeld RS, Tabor GM, House C, Pearl MC. Conservation medicine: Ecological health in practice. Oxford University Press; 2002.

Wisely SM, Howard J, Williams SA, Bain O, Santymire RM, Bardsley KD, et al. An unidentified filarial species and its impact on fitness in wild populations of the black-footed ferret (Mustela nigripes). J Wildl Dis. 2008;44(1):53-64. https://doi.org/10.7589/0090-3558-44.1.53

Smith KF, Acevedo‐Whitehouse K, Pedersen AB. The role of infectious diseases in biological conservation. Anim Conserv. 2009;12(1):1-12. https://doi.org/10.1111/j.1469-1795.2008.00228.x

Smith KF, Sax DF, Lafferty KD. Evidence for the role of infectious disease in species extinction and endangerment. Conserv Biol. 2006;20(5):1349-57. https://doi.org/10.1111/j.1523-1739.2006.00524.x

Zhang L, Yang X, Wu H, Gu X, Hu Y, Wei F. The parasites of giant pandas: Individual-based measurement in wild animals. J Wildl Dis. 2011;47(1):164-71. https://doi.org/10.7589/0090-3558-47.1.164

Patz J, Githeko A, McCarty J, Hussein S, Confalonieri U, De Wet N. Climate change and infectious diseases. In: McMichael, A. J, Campbell-Lendrum, D. H, Corvalán, C. F, Ebi, K. L, Githeko, A. K, Scheraga, J. D, Woodward, A, editors. Climate Change and Human Health. Risks and Responses. Geneva: World Health Organization; 2003. p. 103-32.

Brena P, Gauthier D, Humeau A, Baurier F, Dej F, Lemberger K, et al. How Can Computer Tools Improve Early Warnings for Wildlife Diseases? In: Sèdes, F, editor. How information systems can help in alarm/alert detection. Elsevier; 2018. p. 241-56. https://doi.org/10.1016/B978-1-78548-302-8.50009-5

Ujvari B, Belov K. Major histocompatibility complex (MHC) markers in conservation biology. Int J Mol Sci. 2011;12(8):5168-86. https://doi.org/10.3390/ijms12085168

García Marín JF, Royo LJ, Oleaga A, Gayo E, Alarcia O, Pinto D, et al. Canine adenovirus type 1 (CA dV‐1) in free‐ranging European brown bear (Ursus arctos arctos): A threat for Cantabrian population? Transbound Emerg Dis. 2018;65(6):2049-56. https://doi.org/10.1111/tbed.13013

Mackenstedt U, Jenkins D, Romig T. The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. Int J Parasitol Parasites Wildl. 2015;4(1):71-9. https://doi.org/10.1016/j.ijppaw.2015.01.006

Monsalve-Buriticá S. Enfermedades emergentes y reemergentes de origen viral o bacteriano en Colombia. Medellín: Fondo Editor Biogénesis; 2019. p. 49-62.

McCullough DR. Behavior, bears, and humans. Wildl Soc Bull; 1982;10(1):27-33. https://www.jstor.org/stable/3781798

Gilbert B. Behavioral plasticity and bear-human conflicts. Paper presented at: Bear-people conflicts. Proceedings of a Symposium on Management Strategies; 1989 Jan. Yellowknife, Canada.

Sasmal I, Gould NP, Schuler KL, Chang YF, Thachil A, Strules J, et al. Leptospirosis in urban and suburban american black bears (ursus americanus) in Western North Carolina, USA. J Wildl Dis. 2019;55(1):74-83. https://doi.org/10.7589/2017-10-263

Dubey J, Jones J. Toxoplasma gondii infection in humans and animals in the United States. Int J Parasitol. 2008;38(11):1257-78. https://doi.org/10.1016/j.ijpara.2008.03.007

Baruch-Mordo S, Wilson KR, Lewis DL, Broderick J, Mao JS, Breck SW. Stochasticity in natural forage production affects use of urban areas by black bears: Implications to management of human-bear conflicts. PloS One. 2014;9(1):e85122. https://doi.org/10.1371/journal.pone.0085122

Bronson E, Spiker H, Driscoll CP. Serosurvey for selected pathogens in free-ranging American black bears (Ursus americanus) in Maryland, USA. J Wildl Dis. 2014;50(4):829-36. https://doi.org/10.7589/2013-07-155

Elbroch LM, Lendrum PE, Allen ML, Wittmer HU. Nowhere to hide: Pumas, black bears, and competition refuges. Behav Ecol. 2015;26(1):247-54. https://doi.org/10.1093/beheco/aru189

Lesmerises R, Rebouillat L, Dussault C, St-Laurent MH. Linking GPS telemetry surveys and scat analyses helps explain variability in black bear foraging strategies. PLoS One. 2015;10(7):e0129857. https://doi.org/10.1371/journal.pone.0129857

Kindschuh SR, Cain III JW, Daniel D, Peyton MA. Efficacy of GPS cluster analysis for predicting carnivory sites of a wide‐ranging omnivore: The American black bear. Ecosphere. 2016;7(10):e01513. https://doi.org/10.1002/ecs2.1513

Westmoreland LS, Stoskopf MK, Maggi RG. Prevalence of Anaplasma phagocytophilum in North Carolina eastern black bears (Ursus americanus). J Wildl Dis. 2016;52(4):968-70. https://doi.org/10.7589/2016-02-036

Borka-Vitális L, Domokos C, Földvári G, Majoros G. Endoparasites of brown bears in Eastern Transylvania, Romania. Ursus. 2017;28(1):20-30. https://doi.org/10.2192/URSU-D-16-00015.1

Wu J, Han JQ, Shi LQ, Zou Y, Li Z, Yang JF, et al. Prevalence, genotypes, and risk factors of Enterocytozoon bieneusi in Asiatic black bear (Ursus thibetanus) in Yunnan Province, Southwestern China. Parasitol Res. 2018;117(4):1139-45. https://doi.org/10.1007/s00436-018-5791-0

Stephenson N, Higley JM, Sajecki JL, Chomel BB, Brown RN, Foley JE. Demographic characteristics and infectious diseases of a population of American black bears in Humboldt County, California. Vector-Borne Zoonotic Dis. 2015;15(2):116-23. https://doi.org/10.1089/vbz.2014.1671

Peña-Quistial MG, Benavides-Montaño JA, Duque NJR, Benavides-Montaño GA. Prevalence and associated risk factors of Intestinal parasites in rural high-mountain communities of the Valle del Cauca—Colombia. PLoS Negl Trop Dis. 2020;14(10):e0008734. https://doi.org/10.1371/journal.pntd.0008734

Schwab C, Cristescu B, Northrup JM, Stenhouse GB, Gänzle M. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS One. 2011;6(12):e27905. https://doi.org/10.1371/journal.pone.0027905

Ishibashi Y, Oi T, Arimoto I, Fujii T, Mamiya K, Nishi N, et al. Loss of allelic diversity in the MHC class II DQB gene in western populations of the Japanese black bear Ursus thibetanus japonicus. Conserv Genet. 2017;18(2):247-60. https://doi.org/10.1007/s10592-016-0897-3

Goldstein I, Paisley S, Wallace R, Jorgenson JP, Cuesta F, Castellanos A. Andean bear–livestock conflicts: a review. Ursus. 2006;17(1):8–15. https://doi.org/10.2192/1537-6176(2006)17[8:ABCAR]2.0.CO;2

Bard SM, Cain III JW. Pathogen prevalance in American black bears (Ursus americanus amblyceps) of the Jemez Mountains, New Mexico, USA. J Wildl Dis. 2019;55(4):745-54. https://doi.org/10.7589/2018-12-286

Velez-Liendo X, García-Rangel S. The IUCN Red List of Threatened Species 2017: e.T22066A123792952. 2018 [cited 2022 Nov 21]. Tremarctos ornatus. Available from: https://www.iucnredlist.org/species/22066/123792952

Peyton B. Spectacled bear conservation action plan. Bears: Status Survey and Conservation Action Plan. IUCN: 1999. p. 157-64.

Goldstein IR. Andean bear-cattle interactions and tree nest use in Bolivia and Venezuela. Ursus. 2002;13:369-72. https://www.jstor.org/stable/3873218

Kattan G, Hernández OL, Goldstein I, Rojas V, Murillo O, Gómez C, et al. Range fragmentation in the spectacled bear Tremarctos ornatus in the northern Andes. Oryx. 2004;38(2):155-63. https://doi.org/10.1017/S0030605304000298

Jorgenson JP, Sandoval-A S. Andean bear management needs and interactions with humans in Colombia. Ursus. 2005;16(1):108-16. https://doi.org/10.2192/1537-6176(2005)016[0108:ABMNAI]2.0.CO;2

Parra-Romero A, Zamudio-López J, Camargo-Cárdenas JE, Palacios-Medina CR, Torres L, Castro E, et al. Ocupación del oso andino (Tremarctos ornatus) en la región centro-norte de la Cordillera Oriental de Colombia [Internet]. PNN de Colombia, CAR Cundinamarca, Corpoboyacá, Corporinoquía, Corpochivor, Cormacarena, Corpoguavio, ABCA y WCS; 2019. 32 p.

King JS, Jenkins DJ, Ellis JT, Fleming P, Windsor PA, Šlapeta J. Implications of wild dog ecology on the sylvatic and domestic life cycle of Neospora caninum in Australia. Vet J. 2011;188(1):24-33. https://doi.org/10.1016/j.tvjl.2010.03.002

Palmer MW. Estimating species richness: The second-order jackknife reconsidered. Ecol Durh. 1991;72(4):1512-3. https://doi.org/10.2307/1941127

Colwell RK, Coddington JA. Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B Biol Sci. 1994;345(1311):101-18. https://doi.org/10.1098/rstb.1994.0091

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, Simpson GL, Solymos P, Stevens MH, Wagner H. Package ‘vegan’. Community Ecology Package, version 2. The comprehensive R network (CRAN).[Google Scholar]. 2013.

Diamond J. Sociedades comparadas: Un pequeño libro sobre grandes temas. Bogotá; Debate: 2016.

Navarro M. D, Chávez V. A, Pinedo V. R, Muñoz D. K. Factores de Riesgo Asociados a la Seroprevalencia de Toxoplasma gondii en Mamíferos del Orden Carnivora y Primates Mantenidos en Cautiverio. Rev Investig Vet Perú [Internet]. 2015 Dec 31 [cited 2023 Aug 14];26(3):497. https://doi.org/10.15381/rivep.v26i3.11175

Mata AP, Pérez HG, Parra JG. Morphological molecular description of Baylisascaris venezuelensis, n. sp. from a natural infection in the South American spectacled bear Tremarctos ornatus Cuvier, 1825 in Venezuela. Neotrop Helminthol. 2016;10:85-103.

Oniki-Willis Y, Willis EO. Tick (Acarina) diversity from South American birds and mammals. Atual Ornitológicas. 2018;(206).

Zárate Rodriguez PT, Collazos-Escobar LF, Benavides-Montaño JA. Endoparasites Infecting Domestic Animals and Spectacled Bears (Tremarctos ornatus) in the Rural High Mountains of Colombia. Vet Sci [Internet]. 2022 Sep 29 [cited 2023 Aug 14];9(10):537. https://doi.org/10.3390/vetsci9100537

Quintero LR, Pulido-Villamarín A, Parra-Romero Á, Castañeda-Salazar R, Pérez-Torres J, Vela-Vargas IM. Andean bear gastrointestinal parasites in Chingaza Massif, Colombia. Ursus [Internet]. 2023 Jul 12 [cited 2023 Aug 14];2023(34e4). https://doi.org/10.2192/URSUS-D21-00020.1

Figueroa J. New records of parasites in free-ranging Andean bears from Peru. Ursus [Internet]. 2015 May [cited 2022 Nov 21];26(1):21-7. https://doi.org/10.2192/URSUS-D-14-00034.1

Cruz Hurtado SSM, Muñoz Huamaní M. Identificación de parásitos gastrointestinales de carnívoros en cautiverio criados en el centro recreacional municipal del Cerrito de la Libertad de Huancayo [dissertation]. [Huancayo] Universidad Peruana de los Andes; 2016. 90 p. Available from: https://hdl.handle.net/20.500.12848/114

Chica Cardenas LA. Estimating the andean bear diet through DNA metabarcoding and its relationships to the gut microbiome [Internet]. Universidad de los Andes; 2021. Available from: https://repositorio.uniandes.edu.co/handle/1992/58061

Longmire JL, Maltbie M, Baker RJ. Use of" lysis buffer" in DNA isolation and its implication for museum collections. 1997; (163). https://doi.org/10.5962/bhl.title.143318

Wultsch C, Waits LP, Hallerman EM, Kelly MJ. Optimizing collection methods for noninvasive genetic sampling of neotropical felids. Wildl Soc Bull. 2015;39(2):403-12. https://doi.org/10.1002/wsb.540

Semblante GU, Phan HV, Hai FI, Xu ZQ, Price WE, Nghiem LD. The role of microbial diversity and composition in minimizing sludge production in the oxic-settling-anoxic process. Sci Total Environ [Internet]. 2017 Dec [cited 2023 Aug 14];607-608:558-67. https://doi.org/10.1016/j.scitotenv.2017.06.253

Francis EK, Šlapeta J. A new diagnostic approach to fast-track and increase the accessibility of gastrointestinal nematode identification from faeces: FECPAKG2 egg nemabiome metabarcoding. Int J Parasitol [Internet]. 2022 May [cited 2023 Aug 14];52(6):331-42. https://doi.org/10.1016/j.ijpara.2022.01.002

Stensvold CR, Jirků-Pomajbíková K, Tams KW, Jokelainen P, Berg RPKD, Marving E, et al. Parasitic Intestinal Protists of Zoonotic Relevance Detected in Pigs by Metabarcoding and Real-Time PCR. Microorganisms [Internet]. 2021 May 31 [cited 2023 Aug 14];9(6):1189. https://doi.org/10.3390/microorganisms9061189

Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol [Internet]. 2019 Nov 28 [cited 2023 Aug 14];20(1):257. https://doi.org/10.1186/s13059-019-1891-0

Han BA, Kramer AM, Drake JM. Global Patterns of Zoonotic Disease in Mammals. Trends Parasitol [Internet]. 2016 Jul [cited 2023 Aug 14];32(7):565-77. https://doi.org/10.1016/j.pt.2016.04.007

Shaheen MNF. The concept of one health applied to the problem of zoonotic diseases. Rev Med Virol [Internet]. 2022 Jul [cited 2023 Aug 14];32(4). https://doi.org/10.1002/rmv.2326

Palabras clave

Agentes infecciosos
riesgo epidemiológico
Tremarctos ornatus
úrsidos