Modelación del SUC *(Static Var Compensator)* para cálculo de flujo de potencia en estado estable basado en el algoritmo de Newton-Raphson

Guillermo Andrés Díaz Florez* / Fredy Andrés Murcia Castañeda** / Camilo Andrés Cortés***

RESUMEN

Uno de los primeros pasos para evaluar la factibilidad de un sistema de compensación reactiva (tradicional o basado en electrónica de potencia) es el estudio de flujo de potencia en estado estable, va que este análisis provee una perspectiva global del comportamiento del sistema debido a la influencia del dispositivo. En éste artículo se investigan nuevas alternativas de modelamiento propuestas por la literatura para la inclusión del SVC dentro de sistemas de potencia para estudios de flujo de potencia basados en el algoritmo de Newton-Raphson usando MATLAB. Los modelos y la implementación del programa planteados en esta publicación son los primeros frutos del proyecto de grado que se desarrolla actualmente en la Facultad de Ingeniería Eléctrica acerca de dispositivos FACTS1.

Palabras clave: SVC, flujo de potencia, Newton-Raphson, MATLAB. SUC (STATIC UAR COMPENSATOR) MODELING TO CALCULATE THE STEADY STATE POWER FLOW BASED ON THE NEWTON-RAPHSON ALGORITHM

ABSTRACT

One of the first steps in order to evaluate the feasibility of a reactive compensation system (traditional or based on power electronics) is the study of the steady state power flow, because this analysis provides a global perspective of the system behavior due to the new element. In this paper, new modeling alternatives proposed by the literature for SVC inclusion in power systems for studies of power flow based on the Newton-Raphson algorithms are investigated using MATLAB. The models and the software outlined in this paper are the first results of the degree project of the School of Electrical Engineering regarding FACTS devices.

Key words: FACTS, SVC, power flow, Newton-Raphson, MATL

 ^{*} Estudiante de Ingeniería Eléctrica X semestre, realizando su práctica profesional en Siemens. Correo electrónico: mastergad@ lasalle.edu.co

^{**} Estudiante de Ingeniería Eléctrica X semestre, realizando su práctica profesional en SLI Colombia. Correo electrónico: fredmur07@lasalle.edu.co

^{***} Ingeniero Electricista, Universidad Nacional de Colombia, Doctor en Ingeniería, Universidad Nacional de San Juan, Argentina, Profesor Asistente Ph.D. Facultad de Ingeniería Electrica, Universidad de la Salle. Correo electrónico: camilocortes@lasalle.edu.co

¹ Trabajo de grado «Análisis técnico para la implementación de un sistema de compensación reactiva (FACTS) a la linea de transmisión Circo-Guavio perteneciente al STN».

Fecha de recepción: octubre 25 de 2005.

Fecha de aprobación: noviembre 3 de 2005.

INTRODUCCIÓN

La necesidad de realizar una administración más eficiente de los sistemas eléctricos, ha impulsado la innovación de tecnologías en las áreas de generación y transmisión de energía. Podemos decir que el ciclo combinado es un buen ejemplo de nuevos desarrollos en generación. Por su parte, los sistemas de transmisión no podían quedar en desventaja, dando vida a una nueva gama de dispositivos de última generación llamados Sistemas Flexibles de Transmisión en Corriente Alterna, FACTS (Flexible AC Transmission Systems).

Los niveles alcanzados hoy en día por los FACTS son el resultado del desarrollo tecnológico logrado en los campos de los semiconductores para aplicaciones en potencia, y de los procesadores digitales de señales, además de las nuevas topologías de convertidores para aplicaciones en grandes potencias. En consecuencia, hoy en día se tiene la capacidad de realizar un control sin precedentes sobre el flujo de potencia en los sistemas de transmisión de energía eléctrica.

La situación económica y ambiental del país amerita que se realicen esfuerzos por buscar maneras de optimizar los procesos de transmisión de energía eléctrica. En los FACTS se tiene una excelente alternativa para llevar a cabo el desarrollo de sistemas más eficientes, estables, confiables y ambientalmente más sanos.

La Facultad de Ingeniería Eléctrica de La Universidad de La Salle se ha interesado en este tema, dando como resultado 2 proyectos de grado (Pérez y Rozo, 2003; Briñez y Martínez, 2002) enfocados al estudio de comportamiento eléctrico transitorio de estos dispositivos mediante programas de simulación avanzados².

A diferencia de los trabajos desarrollados anteriormente en la facultad sobre el tema, en éste artículo se propone la ejecución de un algoritmo en Matlab que permita obtener los resultados del problema del flujo de potencia involucrando el SVC (Compensador estático de reactivos, un tipo de FACTS).

Es importante para la Facultad de Ingeniería Eléctrica de La Universidad de La Salle investigar en el tema, debido a que es urgente su inclusión en las asignaturas de sistemas de potencia que se imparten en su programa de estudios, y a las posibilidades de investigaciones futuras para diversos organismos nacionales e internacionales, como por ejemplo: ISA, UPME, etc.

Aunque varios programas de simulación (ETAP, NEPLAN, etc.) contienen actualmente módulos con el modelado de los dispositivos FACTS, estos son cajas negras para los usuarios de los programas.

¿QUE SON LOS FACTS?

Son Sistemas de Transmisión en Corriente Alterna que incorporan convertidores estáticos (dispositivos FACTS) para mejorar la controlabilidad y la capacidad de transporte de potencia eléctrica entre la generación y la carga (Hingorani y Gyugyi, 1999; Song y Johns, 1999; Doña, 2001).

RAZONES PARA USAR FACTS

Razones para la incorporación de los dispositivos FACTS en sistemas de transmisión y distribución (Paserba, 2004; Grünbaum, Sharma y Charpentier, 2000):

² Alternative Transients Program (ATP).

- Estabilidad de tensión en sistemas débiles.
- Reducción de las pérdidas de transmisión.
- Incrementen la capacidad de transmisión postergando la necesidad de nuevas líneas.
- Incrementen el límite de estabilidad transitoria.
- Incrementen el amortiguamiento de pequeñas perturbaciones.
- Mejoren el control de tensión y la estabilidad.
- Amortiguamiento de las oscilaciones de potencia.
- Puede llegar más energía a los consumidores con un impacto mínimo en el medio ambiente, con plazos de ejecución de los proyectos sustancialmente inferiores y con inversiones más reducidas.

Compensador estático de reactivos (SUC)

El SVC se comporta como una reactancia paralelovariable, la cuál genera o absorbe potencia reactiva para regular la magnitud de tensión en un punto de conexión de la red. En esta forma, el SVC consiste de una rama con un reactor controlado (TCR) en paralelo, con un banco de condensadores. Los tiristores disparan un ángulo de control permitiendo al SVC tener casi instantáneamente una velocidad de respuesta. Es usado para proveer rápidamente potencia reactiva y soporte en la regulación de tensión. Es utilizado también, para aumentar el margen de estabilidad del sistema y controlar las oscilaciones del sistema de potencia (Hingorani y Gyugyi, 1999; Geidl, 2003; Ambriz-Pérez, Acha y Fuerte-Esquivel, 2000).

En el estudio de flujos de potencia, el SVC es normalmente modelado como un generador sincrónico, con cero potencia activa de generación y con límites superiores e inferiores dados para la generación de potencia reactiva. El generador representado por el SVC es reemplazado por una admitancia constante si el SVC se mantiene en uno de sus límites (Ambriz-Pérez y Acha, y Fuerte-Esquivel, 2000; BDP Switzerland, 2004).

La representación esquemática del SVC y su circuito equivalente son mostrados en la Figura 1, donde un TCR es conectado en paralelo con un banco fijo de condensadores.

Modelación del SVC (Static Var Compensator) para cálculo de flujo de potencia en estado estable basado en el algoritmo de Newton-Raphson / 31

CARACTERÍSTICAS

- Este sistema permite un mayor grado de ajuste de compensación reactiva, debido a que se pueden implementar varias etapas de condensadores y reactores.
- Los condensadores pueden entrar y salir del sistema, mientras que las inductancias pueden ser controladas mediante el encendido y apagado de los tiristores varias veces en un ciclo de la onda de voltaje.
- Los condensadores pueden servir como filtro para la distorsión que se genera por el recorte de la onda de corriente en las inductancias.

MODELAMIENTO TEÓRICO

Primero se procederá a hacer una breve explicación del algoritmo de Newton-Raphson para solucionar el flujo de potencia normal (sin SVC).

CONCEPTOS PRELIMINARES

Debido a que los sistemas de potencia son organizaciones dinámicas que deben adaptarse rápidamente a las necesidades impuestas por la demanda, es necesario contar con un algoritmo general que permita ingresar la información de manera ágil, y que esta pueda ser expandida o modificada en cualquier momento. Por tal motivo, a través de los años, se ha trabajado en un algoritmo general para cálculo de flujo de potencia en estado estable.

Sea un sistema hipotético de N barras, donde el elemento de la posición (i, j) de la matriz de admitancias Y_{bus} viene dado por Y_{ij} . Como se sabe Y_{ij} es un número complejo, donde su argumento se denota con θ_{ij} (Grainger y Stevenson, 1996), por tanto se puede escribir:

$$Y_{ij} = Y_{ij} \quad \theta_{ij} \tag{1}$$

Aplicando el teorema de De Moivre a la ecuación (1) se tiene:

$$Y_{ij} = Y_{ij} \cos(\theta_{ij}) + j Y_{ij} sen(\theta_{ij})$$
(2)

De manera análoga, la tensión en la barra *j* viene dada por:

$$V_{ij} = V_{ij} \quad \delta_{ij} = V_{ij} \left[\cos(\theta_{ij}) + j sen(\theta_{ij}) \right]$$
(3)

Aplicando la ley de corrientes de Kirchhoff al sistema de N nodos, se tiene que la corriente total inyectada en la barra *i* sería:

$$I_i = \sum_{n=1}^{N} Y_{in} V_n \tag{4}$$

De manera general se tiene que la potencia aparente viene dada por:

$$S_i = P_i + jQ_i = V_i I_i^*$$
⁽⁵⁾

Obteniendo el complejo conjugado de (5),

$$S_{i}^{*} = P_{i} - jQ_{i} = V_{i}^{*}I_{i}$$
(6)

Reemplazando a (4) dentro de (6) se tiene,

$$P_{i} - jQ_{i} = V_{i}^{*} \sum_{n=1}^{N} Y_{in} V_{n} = \sum_{n=1}^{N} Y_{in} V_{i}^{*} V_{n}$$
(7)

Expresando a (7) de manera polar, de acuerdo a (1) y (3) se tiene:

$$P_{i} - jQ_{i} = \sum_{n=1}^{N} |Y_{in}V_{i}V_{n}| \overline{)\theta_{in} + \delta_{n} - \delta_{i}}$$
(8)

$$=\sum_{n=1}^{\infty} |Y_{in}V_{i}V_{n}| \Big[\cos(\theta_{in} + \delta_{n} - \delta_{i}) + jsen(\theta_{in} + \delta_{n} - \delta_{i}) \Big]$$

Separando las partes real e imaginaria de (8), se obtiene:

$$P_i = \sum_{n=1}^{N} Y_{in} V_i V_n \cos(\theta_{in} + \delta_n - \delta_i)$$
(9)

32 / Guillermo Andrés Díaz Florez / Fredy Andrés Murcia Castañeda / Camilo Andrés Cortés

$$Q_i = -\sum_{n=1}^{N} Y_{in} V_i V_n \sin(\theta_{in} + \delta_n - \delta_i)$$
(10)

(9) y (10) son las ecuaciones fundamentales de flujo de potencia para un sistema con N nodos. Como puede verse, componen un sistema no lineal de ecuaciones simultáneas, por tanto, para determinar sus soluciones, es necesario aplicar métodos numéricos que permitan aproximar el resultado de una manera lo suficientemente precisa.

Para solucionar sistemas de ecuaciones no lineales se encuentran algoritmos tales como el de Gauss-Seidel, Newton-Raphson y programación cuadrática secuencial (Palma, Pérez y Núñez, 2001). En este proyecto se implementará el algoritmo de Newton-Raphson, fundamentalmente debido a su rápida convergencia, precisión y ágil construcción.

ALGORITMO DE NEWTON-RAPHSON

ENTRADAS

A continuación se explicarán brevemente los datos de entrada principales para calcular un flujo de potencia mediante el algoritmo de Newton-Raphson.

INFORMACIÓN ACERCA DEL TIPO DE BARRA

Para el cálculo de flujo de potencia se tienen en cuenta tres tipos de barras, las cuales se enumeran en la Tabla 1.

Tipo de Barra	Datos Conocidos	Comentario
Carga	P _i , Q	•
Voltaje Controlado	P,, V,	Todos los buses con generador ³
Compensación (Slack)	ν,, δ,	Se asume, No bus=1, V ₁ =1p.u., $\delta_1=0^\circ$

POTENCIA PROGRAMADA EN BARRAS

Para todas las barras del sistema, en todo el proceso de flujo de potencia se deben cumplir las siguientes relaciones de acuerdo a la ilustración de la Figura 2.

$$P_i = P_{gi} - P_{di} \tag{11}$$

$$Q_i = Q_{gi} - Q_{di} \tag{12}$$

³ También se pueden considerar a las barras con dispositivos de control de tensión en lazo cerrado como de voltaje controlado, independientemente de que no tengan generación de potencia activa, como se mostrará en éste artículo.

Topologia de la red

La topología de la red y la información más importante de las líneas de transmisión se encuentra contenida dentro de la matriz de admitancias Y_{bus} . Para la construcción de dicha matriz se usará el modelo en pi (π) para las líneas, tal y como se ve en la Figura 3.

Los elementos de la diagonal (Y_{ij}) representan la suma de las admitancias que concurren en el nodo j, mientras que los elementos por fuera de la diagonal (Y_{ij}) equivale al negativo de la admitancia que se encuentre entre las barras i y j.

$$Y_{bus} = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} & \dots & Y_{1N} \\ Y_{21} & Y_{22} & Y_{23} & \dots & Y_{2N} \\ Y_{31} & Y_{32} & Y_{33} & \dots & Y_{3N} \\ \dots & \dots & \dots & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ Y_{N1} & Y_{N2} & Y_{N3} & \dots & Y_{NN} \end{bmatrix}$$
(13)

IMPLEMENTACIÓN DEL ALGORITMO

Aprovechando las grandes capacidades de *Matlab* en el manejo de matrices de gran tamaño, su flexibilidad en la programación y su extenso uso en las asignaturas de sistemas de potencia y en general de la carrera de Ingeniería Eléctrica, se adoptó a este entorno de desarrollo como herramienta principal de modelado y símulación para esta investigación.

El algoritmo implementado se basó en los desarrollos propuestos en:

- PowerFlowLab (Saadat, 1999).
- Matpower (Zimmerman, Murillo-Sánchez y Gan, 2005).
- Análisis de Sistemas de Potencia (Graninger, Stevenson, 2001).
- Computer Modeling of Electrical Power Systems (Arrillaga, Arnold, Harper, 2000).

PRUEBR Y EJECUCIÓN DEL PROGRAMA (MPFS)

Se decidió nombrar al programa como *Matlab Power Flow Solver* (MPFS), y de esta forma diferenciarlo de otros programas basados en *Matlab* destinados a calcular flujos de potencia.

Para probar la validez del programa calculando el flujo de potencia estándar (sin la modelación de dispositivos FACTS).

Fuente: Grainger y Stevenson, 2001.

DATOS PRINCIPALES DEL SISTEMA EN CONSIDERACIÓN

Barra	Gen	eración	Car	ga	V, por u	unidad	Tipo barra
	P, MW	Q, Mvar	P, MW	Q, Mvar	Magnitud	Angulo	
1		+	50	30.99	1	0	Slack
2	0	0	170	105.35	1	0	Carga
3	0	0	200	123.94	1	0	Carga
4	318	· · ·	80	49.58	1.02	0	V contro.

Tensión del sistema 230 kV, potencia base 100 MVA.

MPFS entrega los resultados del flujo de potencia en forma de reporte dentro de la ventana de co-

mandos de Matlab, tal como se muestra en la Figura 5.

			FIGUR	IA 5.	REPORTE N	1PFS	SIN SL	JC.		
	MATLA	3								
F#	e Edit I	Debug Deski	op <u>Window</u>	Help						
D			1 CA 🗱	1 9	Current Director	C Docu	ments and S	ettingsVAdmi	nistrador2/Escritorio/MPFS	
3	nortcuts 2	How to Add	I What's	New						
	Bus	Voltaje	Ángulo		-Cargas		-Generac	1ón	Invección	
and many	No.	Mag.	Grados	NW	Mvar		MU	Mvar	Nvar	
							202			
	1	1.000	0.000	170.0	00 30.99	186	.809 1	14.501	0.000	
	3	0.902	-1.873	200.0	00 105.35		000	0.000	0.000	
	4	1 020	1 523	80.0	00 49 58	0 318	.000 1	81 430	0.000	
	-	1.040	1.543	00.0	49.58	318	.000 1	01.450	0,000	
	Tota	1		500.0	00 309.86	504	.809 2	95.930	0.000	
				Fluj	o por linea	s y pér	didas			
	-L3	nea Po	tencias	y flujo	por lineas	Pérd	idaz	Ta	ps	
	de	a	MW	fivar	MVA	MW	Hvar	de t	rafos	
	1	13	6.809	83.511	160.283					
		2 3	8.692	22.298	44,657	0.227	-8.938			
		3 9	8.118	61.212	115.646	1.031	-2.356			
	2	-17	0.000 -10	05.350	199,997					
		1 -3	8.465 -	31.236	49.550	0.227	-8.938			
		4 -13	1.535 -	74.114	150.978	1.715	0.806	R.		
	3	-20	0.000 -12	23.940	235.289					
		1 -9	7.086 -	63.569	116.046	1.031	-2.356			
		4 -10	2.914 -	60.371	119.315	1.835	-3.441			
	4	23	8.000 1	31.850	272.081					
		2 13	3.251	74.920	152.868	1.715	0.806			
		3 10	4.749	56.930	119.220	1.835	-3.441			
	Pérd	lidas Tot	ales			4.809	-13.930			

MODELACIÓN DEL SUC USANDO LA TÉCNICA DE INVECCIÓN DE POTENCIA

En la Figura 6 se muestra el circuito equivalente del SVC (Talebi, Ehsan y Bathaee; 2004), incluyendo transformador de acople.

A partir de las ecuaciones fundamentales de flujo de potencia (9 y 10), se puede demostrar para el circuito de la Figura 6 que las ecuaciones de inyección de potencia de un SVC conectado a una barra *k* del sistema son:

$$P_{kinject} = G_{SVC}V_k^2 - Y_{SVC}V_kV_cCos(\delta_k - \delta_c - \theta_{SVC})$$
(14)

$$Q_{kinject} = B_{SVC}V_k^2 - Y_{SVC}V_kV_cSin(\delta_k - \delta_c - \theta_{SVC})$$
(15)

36 / Guillermo Andrés Díaz Florez / Fredy Andrés Murcia Castañeda / Camilo Andrés Cortés

Por razones de facilidad en el modelado, se desprecia la impedancia del transformador, y se asume que el SVC no tiene pérdidas de potencia activa, por tanto se obtienen las siguientes ecuaciones reducidas de inyección de potencia:

$$P_{kiniect} = 0 \tag{16}$$

$$Q_{kinject} = B_{SVC} V_k^2 \tag{17}$$

Como se advierte en (17), la potencia reactiva inyectada depende únicamente de la susceptancia (B_{svc}) , debido a que V_k es un valor de tensión que el SVC mantiene constante mediante su sistema de control en lazo cerrado. El SVC opera de manera tal, que con la variación de B_{svc} se mantenga la tensión en la barra en el valor preestablecido. De aquí se deduce que la operación del SVC en un sistema de potencia puede ser modelada como una barra de voltaje controlado con inyección de potencia activa cero.

IMPLEMENTACIÓN DEL SUC DENTRO DEL FLUJO DE POTENCIA

Se implementó el SVC en la barra 3 del sistema piloto debido a que es la barra con la tensión más baja de todos los nodos (0,96 pu) y de acuerdo con el criterio planteado anteriormente. Se asumió como tensión objetivo 1 pu obteniendo el reporte de la Figura 7.

A MATI	AB								
File Edit	Debug L	esitop win	tow Help	1	-				
0 😅		n cell	M CY Y	Current Directory	C: Doci	iments and	Settings VAdmi	nistrador2VEscritorioWIPFS	
Shortcuts	How to	Add 🕑 What	t's New						
Bu	s Volte	ije Ángu	10	-Cargas		-Genera	ación	Invección	
No	. Mag.	Grad	os NV	Hvar		MW	fivar	fivar	
1	1.000	0.00	0 50.0	00 30.99	0 186	.037	31.828	0.000	
2	0.982	-0.98	5 170.0	00 105.350	0 0	.000	0.000	0.000	
3	1.000	-2.14	4 200.0	00 123.94	0 0	.000	127.383	0.000	
4	1.020	1.50	8 80.0	00 49.58	318	.000	132.233	0.000	
То	tal		500.0	00 309.86	504	.037	291.444	0.000	
			Fluj	o por lineas	s y pér	didas			
	Linea	Potencia	s y flujo	por lineas	Perd	idas	Та	ps	
d	e a	HU	Mvar	HVA	HN	Mvar	de ti	rafos	
i		136.037	0.838	136.039					
	2	38.971	22.244	44.872	0.229	-8.92	28		
	3	97.066	-21.406	99.398	0.724	-4.13	31		
		170 000	105 250	100 007					
4		-29 742	-105.350	199.997	0 220				
	4 -	131.258	-74.177	150.768	1.711	0.78	81		
3		200.000	3.443	200.030					
	1	-96.342	17.275	97.879	1.374	-4.13	51		
			10.002	1011011		-0.1.			
4		238.000	82.653	251.943					
	2	132.968	74.959	152.641	1.711	0.78	81		
	3	105.032	7.694	105.313	1.374	-6.13	38		
		See Deal			4 037	-19 41	16		
Pé	rdidas 1	otales			4.007	-10.41	10		

Modelación del SVC (Static Var Compensator) para cálculo de flujo de potencia en estado estable basado en el algoritmo de Newton-Raphson / 37

COMPARACIÓN DE MPFS CON NEPLAN

NEPLAN es un programa comercial especializado en análisis de sistemas de potencia y distribución, ampliamente difundido alrededor del mundo. Para comprobar la validez de los resultados de MPFS se procedió a correr el mismo flujo de potencia con SVC bajo las mismas condiciones de trabajo, obteniendo el resultado mostrado en la Figura 8.

			and to and the and the second		
	N1 2:20 W w100 800 % *		Note that we prove the second	₩2 720 60 ≥=95 242 %	
nan sit yanning nitri in terrimum	And the Gar And the Gar And the Gar And the Car	10 In the art of the a	• • • • • • • • • • • • • • •	in Law Talay 27 A	name a mathematical sector
	N3 220 W		11 data 11 data	544 220 AV 94102 000 %	duces and or load
	Ardonacian Grigolas das Grigolas das	I I I I I I I I I I I I I I I I I I I	14 Prote ball sale Control fills ball of	Co Financia	

El reporte generado por NEPLAN se muestra en la Figura 9.

Pictoria Editor Participation Participatin Participation <	Ne	plan [Resultada	os Filuje i	Corgo														
Diary Ex X Partical Of Print Ver Parit Ver Partical Of Prin Ver Pa	PC 81	tivo Ed	Star Forma	ato Akus	es de Cuadr	Kide Yes	Ventana	Ayyda											
1 1	Dis		xinit	a a	1 1 2 1	9 9	0 Q	21 A 1	8.1	L/101	ality								
1 5 5 5 6 5 5 7 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-		I		1	1	- I- I				T	1	1	1	-	1	1	1	-
Benefit Stats Periodial Others Description Course Periodial Periodial Course Periodial Pe	1	-	-	1	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
7 Alteral De Altarda Altarda De Alta	6	Dead	Hasts	PPird	C Pérmit	P Ing.	amp	Pilen	GGen	PCarp	Q Carps	Costo G	Oc Part	al Ci Para	e Q Come	Pardide	di l	1	d'all
B Pred 4.037 18.416 91.600 90.607 14.465 90.007 14.465 90.007 14.465 90.007 14.465 90.007 14.465 90.007 12.783.0 0 0 0 10 20me1 4.037 4.8145 0 0 504.037 14.465 500 20.945 0 12.723.0 0 <td>7</td> <td>AreaZ</td> <td>o Areale</td> <td>MW</td> <td>MVax</td> <td>NOW</td> <td>MVas</td> <td>MW</td> <td>MVer</td> <td>MAN</td> <td>SEV at</td> <td>Urüdade</td> <td>MVat</td> <td>MVat</td> <td>NVa</td> <td>MW</td> <td></td> <td></td> <td></td>	7	AreaZ	o Areale	MW	MVax	NOW	MVas	MW	MVer	MAN	SEV at	Urüdade	MVat	MVat	NVa	MW			
3 Arthal 4.037 18.458 0 0 90.007 140.061 500.000 0 127.203 0	8	fred		# (337	18,416	186.037	31 828	504 037	164 061	500	309-88	0	127 383	0	0	4			
UD Def (1) Periods Per	9	A/ea I		4.0.37	10.418	0	0	504.037	164 061	500	M9.60E	3	127 383	0	η	- 0			
10 Bar Periods Period	11	Tone		+ 037	18 415	0	0	504 037	164.061	500	209.06	9	1,27 (383	- B.	4	0			
13 137	12	100	1	Perfet	Distint	Dientin-	Diret	4	1	1	1	1	1	1	1	1	4	i	dia.
14 200 6.037 0.846 0 <t< td=""><td>12</td><td>hV</td><td>1000</td><td>MW</td><td>Saver</td><td>NOW</td><td>MVar</td><td>1</td><td></td><td>-</td><td>1</td><td></td><td>1</td><td>1</td><td>1</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	12	hV	1000	MW	Saver	NOW	MVar	1		-	1		1	1	1	-	-	-	-
15 North U Annuk P.Com A Currus P.Com B Currus D Currus P.Com D Currus D Currus P.Com D Currus D Currus P.Com D Currus D Currus <thd currus<="" th=""> <thd currus<="" th=""> D Cu</thd></thd>	14	230		4 037	18.416	9	0								-				
15 B Golfs V M Annuals P carry B GC mark BV M Mark BV M BV	15	1	2.7													1.1			
17 18 14 10<	16		Herte	4		Ananto	PCarga	Q.Cam	P.Gen	Q Gen	O Parat	S OPLAPS	INPL NO	IG Dentrie	4 Zona	Area	Petciel	-	100
International system Internati	17	144	Movestra e	2 BV	100		INNY.	MVar	ARVI	Millar	MVm	-	-	1.000	1	1	Red	1	1.
100 101 102 103 144 124 103 13 100 1450 111 12223 0 0 200 1 1 100 1053 0 0 0 200 1 Armst 1 121 101 101 22647 9034 -1 170 10035 0 0 0 0 200 1 Armst 1 121 101 105 200 1 Armst 1 700 100350 0 0 0 0 0 0 200 1 Armst 1 121 100 Bode Bode Bode More N X N <	18	140	NI NI	230	100		50	177.04	166.037	31 640	127 141	0	0		Zoon 1	Areas	4		
H H3 H2 25:877 98:34 -1 H3 H3 H2 25:877 98:34 -1 H3 H3 H2 20:0 Gene Term H3 H3 H2 20:0 Gene Term H3 H3 <t< td=""><td>20</td><td>200</td><td>144</td><td>234 6</td><td>102</td><td>18</td><td>200</td><td>49.58</td><td>318</td><td>(32 255</td><td>0</td><td>0</td><td>ò</td><td></td><td>Zone 1</td><td>Areal</td><td></td><td></td><td></td></t<>	20	200	144	234 6	102	18	200	49.58	318	(32 255	0	0	ò		Zone 1	Areal			
12 12 13 14 6 1 Angests Cargest Périndi Périn	25	197	142	226.957	95.24	-1	170	105.35	D	0	0		0		Zone 1	Areal			
10 Booles Sement Tiple+ P 6 1 Angust Caryabil Print (Print (Print Print Drivet) Print Drivet	22	1																	
24 Memotree Simulates Markur Markur A. Y N Markur Markur M. Markur M. Notement	23	10	Node	Eleman	Tipe	P	Q	11	Angudo	I Cargate	I P Pirch	Q Pérdie	Pre	PCom	OCome	Tap	Relactio	Sens.)	In Tel
35 275 M4 L4 Carge N #9.85 0.232 30.3 36 268 M2 L2 Carge 10 #9.85 0.232 30.3 27 3027 50 U2-322 0.5 0.41 1.28 1.28 1.28 1.20 0.0000 0.0000 0.0000 0.0000 0.000000 0.00000	- 24		Norobre	e tionater		MN	MVar	RA.		1	MW	MVar	NEW	Idw	MVar	1.2	1.2.2.	5.08m	083
30 30 30 20 12 Carpy 10 162,99 911 1228 27 2027 303 30 10 102,993 92 97.9	25	279	144	2.4	Carge	80	49.53	0.232	-30.3										
27 232 232 332 41 13 13 14 12 12 12 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 <th1< td=""><td>- 26</td><td>269</td><td>N2</td><td>12</td><td>carge</td><td>170</td><td>105.35</td><td>0.611</td><td>32.8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>	- 26	269	N2	12	carge	170	105.35	0.611	32.8										
20 1000 FO 101	21	23271	543	240-33	2 SMC	0.	-127.383	0.72	97.9			4.170							~
20 33308 M1 L12 Laws M121 22,44 013 109 0 0,206 4,204 0 0 0,00000 37 33308 M42 L12 Laws 31,42 31,12 0,127 402 0 0 0,00000 32 33356 M42 L12 Laws 31,427 0,197 444 0 0 0,00000 33 3356 M4 L14 Lives 13,2986 444 0 0 0,00000 34 3356 M4 L14 Lives 13,2986 1443 0 17,108 0,7912 0 0 0,00000 34 33554 M4 L14 Lives 105,002 7013 0 7315 6,1394 0 0 0,00000 354 33324 M4 L14 Lives 105,002 7013 0 13726 4,1964 0 0 0,00000 356 <td>20</td> <td>31300</td> <td>N3</td> <td>1.13</td> <td>1000</td> <td>04.521</td> <td>17.778</td> <td>0.20</td> <td>172</td> <td>0</td> <td>0.128</td> <td>41305</td> <td></td> <td>0</td> <td>0</td> <td></td> <td></td> <td>0.0000</td> <td>00</td>	20	31300	N3	1.13	1000	04.521	17.778	0.20	172	0	0.128	41305		0	0			0.0000	00
H 3200 60 112 Line MP44 3117 0197 1492 0 0.308 4004 0 0.00600 331 33216 M4 1.04 Me70 1057 1495 0 1.016 0.0192 0 0 0.00600 331 33216 M4 1.04 Me70 1057 1071 0.0192 0 0 0.00600 34 33326 M4 1.04 Mere 10180 1713 0 1715 0 0 0.00600 351 33226 M4 1.04 Mere 10180 1715 0 1716 0.715 0 13738 41984 0 0 0.00600 351 3326 M4 5 Meande 316 171231 0.014 13738 41984 0 0 0.00600 365 33226 M4 5 Meande 316 171231 0.044 103738 41984 0 <t< td=""><td>30</td><td>11100</td><td>No.</td><td>117</td><td>Lines</td><td>10.671</td><td>22 344</td><td>0 713</td><td>-29.7</td><td>0</td><td>0 2266</td><td>3 9764</td><td></td><td>0</td><td>0</td><td></td><td></td><td>0.0000</td><td>00</td></t<>	30	11100	No.	117	Lines	10.671	22 344	0 713	-29.7	0	0 2266	3 9764		0	0			0.0000	00
32 32356 MG LN LAM LAM Second 19 24 75 0.05 17105 07912 0 0 0.00000 33 33356 MA L2A Lines 152.066 74.056 0.17105 0.7912 0 0 0.00000 34 33324 MA L2A Lines 105.002 717 170.2 0 0 0.00000 35 33724 MA L2A Lines 105.002 716.1 0.702.0 0 1.3786 0.00000 0.00000 36 33724 MA C.2A Lines 105.002 716.2 0 1.3786 8.1984 0 0 0.00000 36 33724 MA C.2A Lines 105.022.3 0.004 15.9 0 0 0.00000 36 337.04 MA O Caused 406.037 3.16.0 0.474 170.3 37 169 107 107.00	31	33306	142	612	Lines	38742	31 173	0.127	140 2	0	0.2296	-8.9264		0	0			0.000	00
33 332 min M4 LN Line 132 Min 74.85 0.76 27.9 0 17106 07812 0 0 000000 54 3323 Min A Line 153 Min 17012 0.81 17106 0.7812 0.0 0.00000 56 33224 Min Line 150 002 F64 0.7912 0 1.3736 8.1584 0 0 0.00000 56 33224 Min G Maxaros 3.172 1.0213 0.84 1.3736 8.1584 0 0 0.00000 56 33224 Min G Maxaros 3.172 1.0213 0.84 1.3736 8.1584 0 0 0.00000 56 3324 Min G Maxaros 3.17213 0.84 1.3736 8.1584 0 0 0.00000 57 160 Min 3.150 0.474 10.3 1.378 1.3784 1.378 1.378<	32	33376	102	1.24	Lines	131 258	34.177	0.305	149.5	0	17105	0 799.2		6	0			0.0000	00
H 30334 MO L34 Lines	33	33316	246	1.24	Lines	132.968	78.959	0.378	-27.9	0	1.7105	07812		0	0			0.0000	00
35 3374 64 1.24 Linea 155027 764 0.278 -0.7 0 1378 61584 0 0 100000 36 33304 44 3 323 64 55.8 55.8 55.9	34	33334	N3	6.34	Lines	-103.658	13 892	0.280	170.2	0	1 3736	-81384		0	0			0.0000	00
36 303.06 N4 0 Measure 318 .032.03 0.848 156.9 37 165 ett F-360 Eaximates1486.037 .314.00 0.474 170.2 38 167 N2 L L Graph 200 1.35 38 256 N1 L Carget 302.90 0.146 .71.8	35	33324	948	1.34	Lines	105 032	7.694	0.299	-27	0	1.3738	61304		0	10			19 0000	00
37 160 177 #-160 Examines # 186.037 345.00 0.474 170.3 38 167 N.0 L.3 Comp4 200 123.40 131.6 39 256 H1 L.3 Comp4 200 123.40 531.6 39 256 H1 L.3 Comp4 200 0.146 23.6	36	33336	Pat	ø	Magano	318	-132 233	0.848	158.9										
289 167 NG L3 Garge 200 123.94 0307 133.9 399 250 NH L3 Garge 50 30.90 0.140 31.6	37	160	547	F-160	Eastern	-186.037	31 828	0.474	176.3										
20 sat mi si sanga 30 2030 0.146 0.15	38	167	242	1.3	Cards	50	122.94	0.597	-12.9										
	10	1 - 20	MIT	2.1	calla	30	1.30	0.146	21.0										

38 / Guillermo Andrés Díaz Florez / Fredy Andrés Murcia Castañeda / Camilo Andrés Cortés

Comparando los reportes de las Figuras 7 y 9, y otras simulaciones hechas con punto de operación del SVC de 0,98 y 1,02 p.u., se demuestra la validez del MPFS en el cálculo del flujo de potencia con el SVC.

CONCLUSIONES

La variación del modelo de inyección de potencia planteada en este artículo demuestra su eficacia al ser implementado en un sistema de potencia.

Al revisar los reportes antes y después de implementar el SVC se pueden resaltar los siguientes efectos eléctricos debidos a la operación del SVC:

- Se redujo la cargabilidad de la línea Abedul-Pino en un 16%.
- Se redujo la cargabilidad de la línea Pino-Arce en un 17%.
- La cargabilidad se reduce significativamente solo en las líneas conectadas a la barra que tiene el SVC.
- La generación de potencia reactiva en Abedul se reduce de 114,501 Mvar a 31,828 Mvar.

La generación de potencia reactiva en Arce se reduce de 181,43 Mvar a 132,233 Mvar.

La disminución de generación de potencia reactiva trae como consecuencia un aumento en el factor de potencia en las maquinas lo cual mejora el grado de estabilidad en la operación de los generadores.

La potencia activa generada es prácticamente igual antes y después de la implementación del SVC.

Las pérdidas de potencia activa totales del sistema se reducen en un 19,1%.

El uso exitoso de MATLAB para la modelación de un FACTS en sistemas de potencia abre la posibilidad de su uso para el aprendizaje de esta nueva tecnología en las asignaturas de Sistemas de Potencia en la Facultad de Ingeniería.

El siguiente paso en la investigación es la simulación de varios tipos de FACTS a la línea de transmisión Circo-Guavio perteneciente al STN, y el determinar sus diversas ventajas desde el punto de vista técnico.

BIBLIOGRAFIA

- Ambriz-Perez, H.; Acha, E. y Fuerte-Esquivel, C. «Advanced SVC models for Newton-Raphson load flow and Newton optimal power flow studies». *IEEE Transactions on Power Systems* 15. 1. (2000): 129-136.
- Arrillaga, J.; Arnold C. Harker B. Computer Modeling of Electrical Power Systems. John -Wiley and Sons, 2000.
- BDP Switzerland. Modelos y datos de entrada de los elementos, guía del usuario NEPLAN V5, Programa NEPLAN, 2004.

- Briñez, J. Martinez, M. Análisis de sobretensiones en sistemas de potencia con dispositivos FACTS. Proyecto de grado Facultad de Ingeniería Eléctrica. Universidad de La Salle, 2002.
- Doña, V. Modelación de FACTS en estado estacionario. Apuntes del Doctorado en Ingeniería Eléctrica, Universidad Nacional de San Juan, Argentina, 2001.

- Geidl, M. Implementation of FACTS in an interactive power for simulation platform.
 Proyecto de grado Facultad de Ingeniería Eléctrica, Zürich: Graz University of Technology 2003.
- Grainger, J.; Stevenson, W. Análisis de Sistemas de Potencia; México: McGraw Hill, 1996.
- Grünbaum, R.; Sharma, R. Charpentier, J. «Improving the efficiency and quality of AC transmission systems (Draft3)» Joint World Bank, ABB Power Systems Paper. (2000).
- Hingorani, N. Gyugyi, L. UNDERSTANDING FACTS concepts and Technology of Flexible AC Transmission Systems. N.Y.: Wiley-IEEE Press, 1999.
- Palma, R.; Pérez, J.; Núñez, J. «Flujo de Potencia Óptimo con Programación Cuadrática Secuencial» XIV Congreso Chileno de Ingeniería Eléctrica, Antofagasta, Chile, 2001.
- Paserba, J. «How FACTS controllers benefit AC transmission systems». *IEEE Power Engineering Society General Meeting* 2. (2004): 257- 1262.

- Pérez, J. y Rozo, C. Análisis de comportamiento eléctrico mediante la Simulación en ATP para un compensador serie (FACTS) en La interconexión Colombia - Ecuador 230kV. Proyecto de grado Facultad de Ingeniería Eléctrica, Universidad de La Salle, 2003.
- Saadat, H. Power System Analysis. Singapure: WCB, McGraw Hill, 1999.
- Song, Y. y Johns, A. Flexible ac transmission systems (FACTS); U.K.: IEEE Press, 1999.
- Talebi, N.; Ehsan, M. y Bathaee, S. «An efficient Power Modeling and Sequential power Flow Algorithm for FACTS Devices» IEEE SoutheastCon Proceedings (2004): 488-507.
- Zimmerman, R.D.; Murillo-Sánchez, C.E.; Gan, D. MATPOWER, A MATLAB Power System Simulation Package, http://www.pserc.cornell.edu/matpower (consultado el 07-07-2005).