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On Existence of Solution of Functional Equation

¢ (x)+olf(x)1=F(x)

Karmelita Pjanic”

EXISTENCIA DE LA SOLUCION
A LA ECUACION FUNCIONAL
o(X)+ olF(x)1=F(x)

RESUMEN

En considera la Ecuacién

o(x)+o[f(x)]=F(x) y se dan las preposiciones necesa-

este articulo se

rias para la existencia de més de una solucién de la

férmula explicita.
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ABSTRACT

In this paper equation ¢(x)+¢[f(x)]=F(x) is conside-
red and prepositions needed for existence of the most

one solution given by explicit formula are given.
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The results of this paper are connected to solutions

of the functional equation

p(x) + ¢lf(x)] = F(x) , (1

where ¢(x) denote unknown function, and f(x) and

F(x) are known functions.
Equation (1) is direct generalization of
p(x) + o(x*) = x
having been discussed by Steinhaus (1955), or

p(x) + o(x7) = x, (@>1)

solved by Hardy (1949).

Kuczma(1959) proves that under some natural as-
sumptions equation (1) has infinitely many solutions

continuous for every x that is not a root of equation
flx) = x. (2)

In the same paper, under assumption that solution
is continuous for x = x, satisfying (2), existence of a

most such solution is proved.

Some solutions of the equation (1) are examined
Malenica (1980a, 1980b) and Pjanic(2006).

In this paper are given additional assumptions nee-
ded for existence of the most one solution of equa-

tion (1) that can be given by an explicit formula.
Next two theorems are proved in Kuczma(1959).
THEOREM 1. Let F(x) be continuous and f(x) conti-
nuous and strictly increasing in [a,b]. Then (1) has

indefinitely many solutions that are continuous in

(a,b).
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THEOREM 2. Let assumptions of Theorem 1 hold.
Then (1) has at most one solution continuous in [a,b)

and at most one solution continuous in (a,b].

In the theorems above and troughout this paper it is
assumed that
1) f(x) is continuous strongly monotone function on
[a,b] and that
f(a) = a, f(b) = b, f(x) > x, x € (a,b);
2) P(x) = x, f*(x) = f(f*x)), k €{0,+1,42,...}

THEOREM 3. If functions f(x) and F(x) satisfy as-
sumptions of Theorem 1 and if there exist functions
p(x) and w(x) that fulfill (1) and are continuous in
(a,b] and [a,b) respectively, then

(p(x)=%F(b)+i(—1)k F(r o) Foy] ©

V=2 F@-Y 0 e ) F@] @

Proof. At first notice that F(b) = 0. Let ¢(x) be solu-

tion of (1) continuous in (a,b].

Putting x = b in (1) one will obtain ¢(b) = 0.
Whereas ¢(x) is continuous for x = b there has to

exist lim ¢(x)=0 and consequently

lime[r"(x) 0. (5)

It is obvious from (1) that
o(x) = F(x) - ¢l[f(x)] (6)
plf(x)] = FIf(x)] - ¢[f*(x)] (7)

Relations (6) and (7) give

p(x) = F(x) - F[{(x)] + o[f*(x)].

Following equation can be obtained by induction



000 =3 (D' Flr* o -1 olr ]

i.e.

o)~ ol @ b Y 0 Pl ]

Changing to limit when n—o, according to (5), one

gets
o) =3 (' Flr @]

Now, take arbitrary F(b). Whereas ¢(x) is solution of

(1) continuous in (a,b], function

def 1
7(0) = p(x)~5 F(b) ®

is a solution of
y(x) + y[f(x)] = F(x) - F(b)
continuous in (a,b].

Hence, y(x) has to be given by
70 =2 [P ) F)]

Therefore, accordingly to (8), expression (3) is ob-
tained.

Similarly (4) can be obtained.

Naturally, there is a possibility that solution of (1)
continuous for x = a or x = b does not exist. Existen-

ce of such solution depends of F(x).

It will be proved that with some simple presumptio-

ns on function F(x) such solution necessarily exists.

THEOREM 4. If functions f(x) and F(x) satisfy as-
sumptions of Theorem 1 and if F(x) is also monotone
in (b-n,b] or [a,a+n), where n and a are positive num-
bers, then solution of (1) continuous in (a,b] or [a,b)

necessarily exists.

Proof. Suppose F(x) is increasing in (b-5,b]. It will be
proved that
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i(—l)"ﬂ”[f"(x)]—F(b)]

(9)
converges uniformly in (h,b) for every a < h < b.

Put
h = fa(h).

n

For as much as 1Im/, =) then there exists whole
n—soo

number N, such thath € (b-5,b] forn>N..
Furthermore, for any given ¢ > 0 there is N > N, such
that

F(b)-F(h ) < efor n > N.
Take arbitrary x € (h,b) and put x = f*(x).
For every n there is x, > h , hence

F(x) =2 F(h)) forn > Nandx e (b-,b].
Obviously

Y F( @) Fo]

k=N+1

converges.

More ever, following inequality holds

i(—l)" [F(x)- F())] |<F(b)-F(x,) S F(b)-F(h,)<e, n > N.

k=n

This implies uniform convergence of (9).
Hence, ¢(x), defined by (3), is continuous in (a,b].

Obviously ¢(x) satisfies (1).

Proof of remaining cases can be obtained on similar

way.

THEOREM 5. If functions f(x) and F(x) satisfy as-
sumptions of Theorem1 and if
| Feg)-Fb) | <Gi),
or
| Fx)-Fla)| <G),
holds in [a,b],
where G(x) is arbitrary bounded function such that

Glf @]

— =<y <], f (b-n,b) (10)
G'(x) Y orx e (b-n
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or

—G(x) <v<l
s € (a, s 11
G[f(x)] forx € (a,a+n) (11)

then there exists at most one solution of (1) continuo-
us in (a,b] or [a,b).

Proof. Suppose (10) holds and prove that (9) conver-
ges uniformly in [h,b] for every a <h <b.

Put h = fr(h). Then there is whole number N such
thath e (b-#,b] forn > N.

Put
supG(x
~ [h’,ﬁ (x) SN
" sup G(x) ,n>N
(3,51

=)

Sequence {An} is decreasing and, more ever EA,,
converges. n=0
In fact, f'(x) € [h ,h

Thus, according to (10),

) foreveryx €[h ,,h 1.

n+1

G(x) < v G[f(x)] < v SUP G(x) =vA, forn>N.

o n+l

Thereafter,

A, = Sup G(x)< vA_ for n >N,
[hn+lahn+2]
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That implies convergence of EAn .
n=0

Take now arbitrary x € [h,b] and put x = f*(x).

Then

| F(x,)-F(b)| < G(x).
As x_ 2 h , then there is whole number k > 0 such
thatx € [h ,,h . ).
So,wegetG(x )< A, < A
Hence,

|F(x)-F(b)|< A,,x€ [h,b]
that implies uniform convergence of (14).
Therefore, ¢(x) defined with (3) is continuous in (a,
b]. Obviously ¢(x) fulfills (1).

Relation (11) can be proved similarly.

REMARK: It is important to note that all results are

valid if one or both ends of modulus interval (a,b) are

infinite. If, b = « then we consider F(b) = })il’n F();
—>oo

and ¢(x) is said to be continuous in infinity if there

exist li_r)n(o(x) < oo, Similar is for a = o,

However, if liﬁl}F(x) =0 (b = worb < »), then
X—>

solutions of (1) such that lrig}(l)(x) exists and

!Cigjl P(x) =00 , are not the only one solutions of (1).
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