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abstract

Shear bands as mode of failure in granular soils 

has been largely studied without to physically 

explain the formation mechanism of that, neither to 

reproduce exactly a defined failure pattern. Several 

algorithms were performed with a distinct element 

method. In this ones, are looking for to reproduce 

only shear band in a biaxial simulation on rigid disk 

assembly, to get information at shear zone.
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formación de bandas de corte 
en materiaLes granuLares: una 
aproximación micromecánica

resumen

Las bandas de corte como modo de falla de suelos 

granulares han sido ampliamente estudiadas sin 

explicar físicamente su mecanismo de formación 

ni reproducir con exactitud un patrón de falla defi-

nido. Se desarrollaron varios algoritmos usando un 

método de elementos discretos, en los que se buscó 

reproducir la formación de una banda de corte única 

en una simulación de un ensayo biaxial sobre un en-

samblaje de discos rígidos, para obtener información 

de esfuerzos en la zona de corte.

Palabras clave: Bandas de corte, micromecánica, 

materiales granulares, prueba biaxial, PFC2D, simu-

lación, materiales particulados
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introduction

In a plane strain compression on dense sands, ho-

mogeneous deformation first takes place. Near peak 

stress, the deformation suddenly localizes into thin 

zones (called shear bands), and the stress drops to 

a residual stress state. In soil mechanics, this mode 

of failure is very important as well as in engineering 

design problems, where one is interested in ultima-

te and residual bearing capacities of the analyzed 

structures.

To study shear bands, Hill (1962) Mandel (1964) and 

Rudnicki & Rice (1975) analyzed the occurrence and 

inclination of shear bands. But, their constitutive 

equations are function only on the first gradient of 

displacement then the shear band thickness is unde-

termined. Mühlhaus & Vardoulakis used the Cosserat 

theory to obtain the shear band thickness as a mate-

rial length, but Huang & Bauer (2001) and Tejchman 

& Gudehus (2001) showed that the thickness of shear 

bands is not a material constant. Huang et al. (2002) 

find that the thickness of shear bands is proportional 

to the mean grain diameter and a friction parameter 

related with inter-granular friction and these one is 

influenced by the density and stress rate. In all cases, 

the analyses are developed in plane strain conditions 

with constitutive equations in 2D and supported 

with quantities of stress and strain at the boundary 

of the biaxial specimens but they did not consider 

the micro-structure behavior and this relation with 

the localization of deformation process. Several au-

thors has develop studies related with the micro-

structure of shear bands: Bardet & Proubet (1992) 

with numerical simulations of granular assemblies 

suggest that the particle rotations at shear bands are 

induced by macrorotations, Iwashita & Oda (1998) 

and Oda & Kazama (1998) showed with numerical 

simulation that the microdeformation mechanism 

of dilatancy in a shear band is the combination of 

buckling and rolling of columns, but do not mention 

about the implementation algorithm to boundary 

conditions. To develop parametric studies of the in-

fluence of initial density, load velocity and stiffness 

at contacts it is necessary first to have an algorithm 

that permit to reproduce realistic biaxial test with 

particle assemblies. In this paper, two algorithms to 

reproduce flexible boundaries (like membranes) are 

presented. The goal of the work is to develop a dee-

per understanding of the micromechanics of particle 

assemblies (Gómez, 2004).

discrete modeL

The discrete model employed to implement the soft 

boundary algorithm was the commercially availa-

ble code PFC-2D v3.0 (Itasca, 2002, b). The mathe-

matical formulation is based upon the solution of 

Newton’s equations of motion for each particle in a 

two-dimensional assembly. 

The assumptions of method are: contacts occur at a 

point, particles may be represented as rigid disks or 

spheres, and particle overlap is allowed at contacts 

but these overlaps are small relative to particle size. 

The solution include: law of motion, force-displace-

ment law, as part of calculation cycle, and contact 

constitutive model and boundary conditions that 

defines the simulation conditions and last ones are 

user defined.

force-dispLacement LaW

Solution of the problem begins with determining the 

unit normal vectors of the contacts in the assembly 

as:

     (1)

where: ni is the normal vector; xi
[A] and xi

[B] are 

the locations of particle centers A and B, respecti-

vely, and d is the distance between particle centers. 

The overlap at contacts, Un, is calculated as:
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     (2)

In first case Eq. (2) defines the overlap between two 

ball and the second one the overlap between ball and 

wall; R[Φ] is the radius of ball Φ and d is the distance 

between two centers of contiguous particles. The lo-

cation of the contact point is: 

     (3)

When contact location is known, it is possible to cal-

culate velocities and invoke the constitutive relation 

for contact theory to calculate normal and shear for-

ces on each particle.

motion LaW

Each new calculation cycle, new particle forces, 

Fi, and moments, M3, are used to calculate the new 

acceleration and angular momentum, and then the 

Newton’s equations of movement are applied: 

  
   (4)

     (5)

where m is particle velocity, gi is acceleration due to 

gravity, Hi is the angular momentum of the particle 

and β is 0.4 for spheres and 0.5 for disks. The equa-

tions of motion 4 and 5 are discretized with central 

finite differences:

     (6)

      (7)

       (8)

the equations 6 to 8 are respectively, translational 

and rotational accelerations, translational and rota-

tional velocities, and displacement.

The critical value of the time step for a stable so-

lution to a DEM problem depends on the minimum 

eigenperiod of the entire system. Calculating this 

value is computationally very expensive, so PFC-2D 

uses a simplified spring and mass logic to calculate 

the critical time step (Itasca, 2002):

      (9)

where m and I are the mass and inertia of particle, 

and ktras and krot are the translational and rotational 

stiffnesses. The minimum of all critical timesteps 

computed for all degrees-of-freedom of all particles 

is the final critical timestep.

contact modeL

The contact model relates relative displacements 

with contact forces via Eqs. 10 and 11: 

      (10)

      (11)
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The normal stiffness, Kn, is secant stiffness and it re-

lates the total normal force to the total normal displa-

cement; the shear stiffness, ks, is a tangent stiffness 

since it relates the increment of shear displacement 

to the increment of shear force. The contact normal 

and shear stiffnesses are given by:

      (12)

      (13)

In PFC-2D program, this model as referred as linear 

contact model.

boundary conditions

In PFC-2D it is possible to define boundary condi-

tions by two kinds of control entities: velocity-con-

trolled walls or velocity or force-controlled particles. 

program environment

PFC-2D has a series of commands that permit to crea-

te and deal with the model entities as particles and 

walls, and a programming language called fish, with 

their own language rules and intrinsic functions, and 

that enables the user to define new functions and 

to generate his own control boundary conditions to 

program simulation environments. Itasca as support 

codes of fish has some test environments and models 

called “Augmented fishtank”, to develop a biaxial 

test, but it consist in a biaxial compression test that 

does not allow lateral deformation of the specimen, 

then the shear band formation is not possible. Ne-

vertheless, several algorithms of fishtank has been 

used to develop the biaxial simulation with lateral 

soft boundary.

fishtank biaxiaL environment

The fiishtank biaxial test consists in a set of proce-

dures to: particle generation, set particle properties, 

seats the specimen (applying initial stresses), execu-

te the load of the biaxial test with walls, and finally 

to get responses from the assembly. 

The particle generation is made into a box of four 

walls with a radius expansion algorithm that allows 

defining the initial porosity of the specimen. First, 

with uniform distribution of particle radii and mi-

nimum and maximum radii defined, the algorithm 

computes the number of particles required inside 

the box based on the mean particle radius and the 

desired porosity, then the particles are generated and 

place randomly in the given sample area. The actual 

sample porosity is then calculated and the radii of 

all particles are increased by the following multipli-

cation factor: 

      (14)

where ndesired and nmeasured are respectively, the desired 

and measured porosity. Expanding the radii by this 

factor will result in overlapping particles and, thus, 

large unbalanced forces. The particles are allowed to 

equilibrate on their own (without applied stresses). 

The particle assembly is created using zero friction 

and zero shear stiffness between particles. In this 

manner, no shear forces are generated between the 

particles in this initial state. After equilibrium is rea-

ched, particles are assigned friction values and shear 

stiffnesses. The sample is then allowed to re-equili-

brate. Figure 1 show the particle generation process.

In the load process, the top and bottom walls act as 

loading platens, and the velocities walls are contro-

lled by a servo-mechanism that maintains the reques-
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ted stresses. Accordingly with fish manual (Itasca, 

2002), the biaxial test begins by applying confining 

and vertical stresses, next the dimensions of the spe-

cimen at this stage are taken as reference dimensions 

to be used in the computation of stresses and stra-

ins during subsequent load phase, the specimen is 

loaded by moving the platens towards one another 

at the velocity vp. During load phase, the deviatoric 

stress, σd = σy - σx, and axial strain are monitored. The 

test ends when axial strain reach the specified limit 

(∈y < (∈y)lim). Figure 2 shows a sketch of load process 

at the biaxial test. 

Figure 2. Sketch of biaxial-test environment 

(Itasca, 2002).

controL parameters

The input parameters that control the fish biaxial 

test are referred to define the material assembly and 

to control the boundary conditions and the end of 

the test. These parameters are listed in table 1. 

Table 1. Parameters that control the fish 

biaxial simulation

Parameter Description Unit

ρ Ball density Kg/cm3

η Gross areal porosity

Ec Ball-ball contact modulus Pa

kn/ks
Ball stiffness ratio

µ Ball friction coefficient

H Specimen height m

w Specimen width m

βx Lateral wall stiffness-reduction factor

βy Vertical wall stiffness-reduction factor

σx
t Target confining stress Pa

σy
t Target vertical stress Pa

∈ Wall-servo tolerance

vp
Final platen velocity m/s

Np
Total cycles of platen acceleration

Sp Accelerate platens in this many stages

(∈y)lim Limiting vertical strain

Figure 1. Particle generation process. (a) Particle assembly after generating particles at 
half their final size (b) Particle assembly after equilibrium has reached (Itasca, 2002).
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In table 1, the wall stiffness-reduction factors —are 

employed to set the wall normal stiffness as the factor 

for the average particle normal stiffness of the speci-

men. The wall-servo tolerance is used to control the 

wall velocity, such that corresponding velocity will 

be zero when |(σ − σt)/σt| ≤ ∈. Finally, the Np and Sp 

parameters are used because if the platen velocity vp 

is applied in a single step, the large acceleration will 

produce inertial forces within the specimen that may 

cause damage. To eliminate these inertial effects, the 

platen acceleration is controlled with the values of 

Sp and Np. The platen velocity is adjusted to reach 

final value of vp in a sequence of Sp stages over total 

of Np cycles.

soft boundary 
aLgorithm

Two kinds of particle control were implemented in 

algorithms to obtain soft boundary control with par-

ticles: velocity-controlled and force-controlled. 

veLocity-controLLed boundary

In a first approximation, after initial stress applica-

tion with walls, behind of each wall a column was 

constructed with mono-sized particles. Particles in 

these columns were controlled with velocities of a 

similar procedure of wall servo-control. There were 

several difficulties: first, the indentation of boundary 

mono-sized particles caused a not realistic interac-

tion between soft boundary and specimen (inden-

tation of boundary particles into the specimen); se-

cond, it is not possible to monitor the confinement 

pressure for the indentation of particles and third, 

when one to fix velocity to boundary particle, also 

apply a force of undetermined magnitude; finally, 

the boundary particles increase the complexity of 

model and the calculation time. Although, shear 

band was not developed, the displacement field sug-

gests localization (figure 3).

Table 2. Parameters of biaxial simulation 

with velocity-controlled soft boundary and 

complementary information

Parameter Description Value

ρ Ball density 2630 Kg/cm3

n Gross areal porosity 0.14

Ec Ball-ball contact modulus 88 x 109 Pa

kn/ks Ball stiffness ratio 1.0

µ Ball friction coefficient 0.5

Rmin Min. radius of ball assembly 7.5 x 10-4 m

Rmax/Rmin Ratio max/min radius 1.66

H Specimen height 64.01 x 10-3 m

w Specimen width 32 x 10-3 m

βx
Lateral wall stiffness-reduction 
factor 0.01

βy
Vertical wall stiffness-reduction 
factor 1.0

σx
t Target confining stress 106 Pa

σy
t Target vertical stress 106 Pa

∈ Wall-servo tolerance 0.01

vp Final platen velocity 5.0 x 10-2 m/s

Np
Total cycles of platen accelera-
tion 400

Sp
Accelerate platens in this many 
stages 10

(∈y)lim Limiting vertical strain -1.5 x 10-2

Complementary information

Number of assembly balls 563

Number of boundary balls 260

Radius of boundary balls 2.5 x 10-4 m

RAM memory 128 Mb

Processor velocity 500 MHz

Time of process 2.5 days

The parameters used in this simulation and other 

important information are listed in table 2.
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Figure 3. Biaxial simulation with soft boundary velocity-controlled. (a) Final displacement field (b) 

Chain forces in assembly and boundary particle indentation.

stress-controLLed boundary

The second approximation of soft boundary con-

sists in to identify and listing the boundary parti-

cles of the specimen, to get his contact forces with 

the lateral walls and boundary particle unbalanced 

force (horizontal component). To this purpose, it is 

necessary to generate several arrays to contain and 

to handle this information, and several control and 

monitoring procedures that lets to maintain the con-

finement pressure and to prevent damage or macro 

unbalanced condition of the specimen. 

The procedure includes three steps: to initialize the 

membranes (boundary particles), to homogenize 

boundary forces to obtain a uniform stress condition 

and to control membrane; to monitor variables and 

prevents the lost of confinement pressure of the spe-

cimen in load phase. 

initiaLizing the membrane

This procedure is applied after the initial stress 

application with walls. This one consists in to get 

the ball identification of the balls in contact with la-

teral walls by the list of contacts of the each lateral 

wall, next, to obtain the corresponding contact for-

ces and particle’s unbalanced forces. At this stage It 

was observe that the lateral forces on the boundary 

of the specimen are unbalanced (in very small mag-

nitude but sufficient to cause lateral displacement of 

the specimen). Then, before to apply the forces on 

the balls that replace the confinement of the lateral 

walls, it is necessary to equilibrate the magnitudes 

of the confining forces on the boundary balls to the 

total force on the both membranes are equal. 

homogenization of boundary forces

In the final of last process, the magnitude of the 

applied forces on the boundary particles in the 

same membrane is very different particle to particle. 

To control the relative vertical displacement of the 

boundary particles and as the same time to maintain 

constant the confinement pressure it is necessary to 

modify magnitudes of boundary forces to obtain a 

uniform distribution of forces (uniform stress) over 

the membrane, but avoided inertial effect that dama-

ge the specimen.

On the other hand, to maintain the general equili-

brium condition in specimen, the difference of the 
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sum of forces over membranes must remain null to 

allow the system equilibrium. 

The procedure consists in: to get the relative height 

of each particle over each membrane. This height is 

the ratio between the external height of a boundary 

particle and the specimen height (hk
r = hk

e/h) as show 

in figure 4 where the k-particle belong to left mem-

brane, then to compute the average and standard de-

viation of relative heights to each membrane; next in 

each calculation cycle, to compute the average and 

standard deviation of percentage of applied forces on 

the boundary particles, the corresponding normali-

zed variable and comparing this one with average 

of normalized variable. If the normalized variable is 

larger than the average then the percentage of force 

of respective particle is reduced in a proportion of 

standard deviation of force percentages, else, a pro-

portion of the sum of reductions of force percentages 

is added to the actual force percentage of the boun-

dary particle. The homogenization process ends 

when the standard deviation of force percentage is 

smaller than the standard deviation of relative height 

in both membranes (Gómez, 2004).

To prevent the lost of local confinement of the spe-

cimen, the boundary particle x-velocity is fixed in 

zero.

With this process of homogenization, the chain for-

ces before and after this process are equal. 

Figure 4. Definition of particle external 

height in a left boundary particle.

controL and monitoring

To control the confinement force during the axial 

load phase in biaxial test, if the assumption of uni-

form distribution of confinement pressure is true, the 

percentage of force applied to each boundary particle 

must be proportional to his relative height. Then, in 

each calculation cycle, it is necessary to compute the 

relative heights. But it is possible that inertial effects 

cause lost of contacts in some boundary (figure 5). 

To correct these inertial effect, in each calculation 

cycle, is assign zero velocity to the boundary parti-

cles but in the cycle the particle can to change his 

velocity for his unbalanced force.

In a simulation with the same control parameters 

of table 2, the final configuration and displacement 

field was the showed in figure 5.

With the model used was not possible to reprodu-

ce shear band but it is feasible loading laterally the 

specimen with the boundary particles after the par-

ticle generation and change the stiffness and friction 

of the particles, but it is necessary to check the in-

ternal sample equilibrium, for the inertial effect. It 

noted that always the minimum unbalanced force is 

around 10-6 or 10-7 Pa, then with the PFC2D simula-

tions the internal perfect equilibrium never occurs. 

LocaL fieLds of stress

To compute the evolution of local fields of stress, it 

is possible to implement local areas to obtain average 

stress tensors inside them. In each control area, are 

obtained the average of unbalanced forces of parti-

cles inside them, and this calculus can be develop 

several times during the axial loading process. If the 

control areas are defined small enough and are dis-

posed over all specimen area, it is possible to obtain 

the local evolution of stress inside the specimen and 

“to fish” the shear band and his stress evolution. 



Shear band formation in granular materials: a micromechanical approach  /  63

Revista Épsilon N.º 12 / enero - junio de 2009

concLusions

Two soft boundary algorithms were implemented. 

The velocity-control boundaries do not allow the 

calculation of relevant macroscopic variables be-

cause the velocities on the boundary particles cause 

undetermined forces. The stress-controlled bounda-

ries, allow the calculation of macroscopic variables 

but the correct control of confinement pressure was 

elusive. The inertial effects on PFC2D are difficult 

to control. It is possible to reproduce a shear band 

loading laterally the specimen with the boundary 

particles after the particle generation and change the 

stiffness and friction of the particles, but it is neces-

sary to check the internal sample equilibrium, for 

the inertial effect caused by the walls during radius 

expansion process.

Figure 5. Biaxial simulation with soft boundary stress-controlled. (a) Final displacement field 

(b) Chain forces and final assembly configuration (Gómez, 2004).
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